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We consider self-avoiding walks on the simple cubic lattice in which neighbor- 
ing pairs of vertices of the walk (not connected by an edge) have an associated 
pair-wise additive energy. If the associated force is attractive, then the walk can 
collapse from a coil to a compact ball. We describe two Monte Carlo algorithms 
which we used to investigate this collapse process, and the properties of 
the walk as a function of the energy or temperature. We report results about the 
thermodynamic and configurational properties of the walks and estimate the 
location of the collapse transition. 

KEY WORDS: Self-avoiding walks; lattice models; Markov chains; Monte 
Carlo; phase transitions. 

1. I N T R O D U C T I O N  

Linear polymer molecules in dilute solution are believed to exist in three 
distinct states, depending on the quality of the solvent. In a good solvent 
(at high temperature) the polymer is an expanded random coil, while in a 
poor  solvent (at low temperature) it is a compact ball. Between these two 
forms there is a state which exists only at a single temperature, the theta 
temperature, in which the exponents characterizing the dimensions of the 
polymer are different from those in either the good or poor  solvent regimes. 
In  this paper we describe two Monte  Carlo algorithms for investigating a 
model of the collapse of a linear polymer from a coil to a ball. Although 
one of these algorithms (umbrel la  sampling) is wellknown in the statistical 
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mechanics of liquids, I~1 it has not previously been applied to the collapse of 
linear polymers. The other algorithm (which we call multiple Markov 
chains) is a variant of a method described by Geyer and Thompson 12~ in the 
statistics literature. Both of these algorithms are designed to circumvent the 
quasi-ergodic problems associated with sampling in the collapsed phase. 

The abrupt change in the dimensions of linear polymer molecules in 
dilute solution when the temperature (or solvent quality) is varied can be 
measured directly by light scattering ~3"4~ or indirectly by measuring the 
intrinsic viscosity of the polymer, ts~ Although the collapse has been studied 
for many years, the detailed nature of the transition is still not well under- 
stood. The most frequently studied model is an interacting self-avoiding 
walk. We consider the simple cubic lattice Z 3, and write (x, y, z) for the 
integer coordinates of a typical point. An n-step self-avoiding walk is an 
ordered sequence of (17+ 1) vertices of the lattice with coordinates 
(xi, y,-, zi), i = 0, 1 ..... n, such that (Xo, Y0, Zo) is the origin, pairs of vertices 
whose index differs by unity are unit distance apart, and every vertex is dis- 
tinct. Self-avoiding walks have proved to be useful models of the dilute 
solution behavior of linear polymers in good solvents. To mimic the effect 
of solvent quality, we introduce a potential associated with the walk, 
V = Z i < j  v~, where v v is infinity if the vertices i and j are coincident, e if 
the vertices are unit distance apart and ] i - j ]  :~ 1, and zero otherwise. We 
shall be mainly interested in the case e < 0, so that there is a short-range 
attractive force between pairs of vertices. We call each pair of vertices for 
which v v = e a contact.  The canonical partition function can be written as 

Z,,(f l)  = ~. c, ,(m) e . . . . .  /kBr= ~. c, ,(m) e ''p (1.1) 
n~ n~  

where c,,(m) is the number of self-avoiding walks with 17 edges and m 
contacts, fl = --e/kB T, kB is Boltzmann's constant, and T is the absolute 
temperature. 

It is easy to prove that 

lim n - l  log Z, ,( f l)  --  ~ ( f l )  (1.2) 

exists for fl ~< 0, and that ~( f l )  is monotone, convex, and continuous in this 
regime. However, for fl > 0 the existence of the limit has not been estab- 
lished. Nonetheless, the usual approach is to assume the existence of the 
limit, and that there is a single positive value of fl at which ~-(fl) is non- 
analytic. Let us call this value flo. For fl < flo the walk is expanded and for 
f l > f l o  it is compact. If we write ( S ~ , ( f l ) )  for the mean square radius of 
gyration, then we expect that 

(S,~(fl) } ~ n 2v~p~ ( 1.3 ) 
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where v( f l )=v(O)=v  for f l<flo,  v(f l )=v,  for fl=flo, and v ( f l ) = l / d  for 
fl > flo, where d is the dimension of the lattice. In two dimensions there is 
little doubt about the value of v, c6~ and there is a prediction for the value 
of v,. ~7~ In three dimensions there are predictions based on renormaliza- 
tion group argumentsJ 8-'2~ In addition, the problem has been studied by 
transfer matrix methods ~'3~ and by exact enumeration and series analysis 
techniques.I ~4-~ 8 

This seems to be a natural problem for Monte Carlo methods and, 
indeed, there have been a number of attempts to attack the problem in this 
way. (19-22~ One approach is to use a method in which the self-avoiding 
walk is constructed step by step, (23~ and Mazur and McCrackin (~91 and 
Meirovitch and Lim ~n~ both use methods of this general type. The other idea 
is to construct a Markov chain whose states are the n-step self-avoiding 
walks and to sample along a realization of this Markov chain. This is 
the approach followed by Webman et al. ~2~ Since the relative weights of 
the walks will be different and will depend on the value of fl, one usually 
chooses the Markov chain to have the appropriate Boltzmann distribution 
for its limit distribution. This method will work well provided that fl is not 
too large, but for larger (positive) values of/~ the "mobility" of the Markov 
chain can be very low. That is, there are different regions of configuration 
space which are important at a particular value of fl but which are not 
easily accessible from one another in a realization of the Markov chain 
described above. The rate of convergence of the Markov chain to its limit 
distribution can be very slow and, worse still, this might not be apparent 
in a run of reasonable length, so that error estimates might be seriously 
underestimated. Clearly one needs to design a Markov chain which is more 
mobile and, in the next section, we describe two different methods for 
achieving this. 

The primary aim of this paper is to describe the sampling schemes and 
their implementation. In addition, in Section 4 we report some numerical 
results about the fl-dependence of thermodynamic and metric properties 
and use these to form estimates of the location of the O point. 

2. M A R K O V  C H A I N  S A M P L I N G  

One is interested in estimating the expectation value of some property 
(2 of the walks with respect to the Boltzmann distribution, i.e., 

E~"= t Q(k) e'"~la 1 "~ 
< Q(fl)> - Q(k) e "~k~p (2.1) 

Z'k"=, e"k~l~ Z.(fl) k/-S'-- l 

where the sums are over all the % n-step self-avoiding walks. Q(k) is the 
value of the property Q for the kth walk and m(k) is the number of 
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contacts in the kth walk. A natural idea is to define a Markov chain on 
the set of n-step walks, whose unique limit distribution {nk(fl) } is the 
Boltzmann distribution {eP""kJ/Z,(fl)}. For example, the Markov chain 
could be chosen such that the elements Po of the transition matrix from 
state i to state j are given by 

Pu -- q,J min( 1, nJni) (2.2) 

for j ~ i and with p ,  chosen to make the row sums of the matrix equal to 
unity. Here qo are the elements of the transition matrix of an underlying 
symmetric Markov chain (qo.= qji) which is ergodic. It is easy to see that, 
provided that all the nj are positive, the Markov chain with transition 
probabilities given by (2.2) has unique limit distribution {n~}J TM In prin- 
ciple it is only necessary to set ni to be the Boltzmann probability for the 
ith walk and to choose a suitable underlying symmetric Markov chain, 
such as that associated with the pivot algorithm/24"25~ In this case the 
natural estimator of (2.1) is the sample mean 

At 

1 Q(S(t)) (2.3) g(P) 

where S(t) is the state of the Markov chain at time step t in the N-step 
realization. 

The problem with this method is that at large positive values of fl the 
Markov chain converges only very slowly to its limit distribution. Typical 
realizations of the Markov chain spend long periods sampling relatively 
small regions of the configuration space and only rarely move to other 
regions. This is the classical quasiergodic problemJ TM One might hope to 
avoid this difficulty by sampling the state space at lower values of ft. This 
approach depends on the following identity: 

Y~"= l Q(k) eP""l'qtk/nk Zk nk 
(Q(fl)) = Ek e'Omtk)7~k/7~k ~k 7Zk 

L Q(k)(eP'lkl/~)(nk/Zk nk) 
Z,(ep""kT-k)(nJZ~ ~) 

( QeP"/n). 
- (ep,,/n),~ (2.4) 

where the subscript n on the angular brackets denotes expectation with 
respect to the distribution { n~}. This quantity can be estimated by the ratio 
estimate 

O.(fl) = E~=l Q(S(t)) eP"'~sm)/nsm (2.5) 
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By choosing ?t k = eP'"'~k~/Z,,(fl ') with fl' < fl we can sample at fl', where the 
mobility of the Markov chain should be higher, and reweight the data 
appropriately to obtain an estimate of the expectation at ft. 

In practice this is not very useful because if fl' is small enough to give 
sufficient extra-mobility, then the overlap between the distributions corre- 
sponding to fl and fl' will usually be too small to have efficient sampling 
over the parts of configuration space relevant to the distribution at ft. 
However, several variants of this idea based on the identity (2.4) are useful, 
and some of them will be described in the following subsections. 

2.1. Multiple Markov Chains 

Geyer and Thompson ~2) have described a method for increasing the 
mobility based on sampling along a set of Markov chains 4 run in parallel. 
We describe a minor variant of this approach, which we have found to be 
very useful in these problems. One wants to sample at some value p for 
which convergence is very slow, and one knows that convergence is fast at 
some other value fl'. The idea is to select a set of values fl' =i l l  <f12 < 
f13 < " "  <ft,, =f l  to interpolate between fl' and fl so that there is con- 
siderable overlap in the distributions at fll and ill+l- 

The Markov chains at fit, f12 ..... tim are evolved in parallel for a 
specified number of time steps. Then an adjacent pair, fl/, fl/+ 1, of fl values 
is chosen uniformly from the m -  l adjacent pairs and, as a trial move, the 
configurations at these fl values are swapped. Suppose that, when the swap 
is attempted, the state of the Ith chain is St and the state of the ( l+  1)th 
chain is S/+t. Writing nk(fll) for the probability of the state k at ill, the 
trial move is accepted with probability r(l, l +  1 ) given by 

/ ~s,.,(/?3 ns,(P/+l)'~ 
1, r(l, l+ 1)=  min \[ ns,(fl,)ZCs,.,(P,+,)]/ (2.6) 

This whole process is itself a Markov chain, which we call the composite 
Markov chain. Since each of the separate Markov chains is ergodic, so is 
the composite Markov chain, and the unique limit distribution of the 
composite Markov chain is the product distribution of the separate 
Markov chains at ill, f12,..., tim. This is immediate since, if r(/, l +  1) < 1, 
then 

4 In this section we shall be primarily interested in Markov chains with Boltzmann limit dis- 
tribution {nk(fl,)} = {exp[fl,rn(k)]/Z.(fl~)}. 

822182/I-2-11 
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riSk(ilk) . .  ns,(flk) 
l m -  1 m -  1 \rCs,(flt) rts,§ + t).J k = l  

= I - I  r iSk( i lk) r tS '+ ' ( f l ' )  rCs ' ( f lz+ '  m - -  1 
k # l , l +  1 

with a similar result when r(l, l +  1)=  1. 
One can understand the advantage of this method by focusing on a 

particular fl value. Every successful swap involving this and a neighboring 
chain corresponds to a large change in the configuration at that value of 
fl, so the correlation time at each fl is markedly reduced. Swaps move the 
system (at a particular fl) to new regions of configuration space and there- 
fore tend to mitigate quasi-ergodic problems. Of course, some fl values 
should be chosen so that convergence at those values is rapid. 

There are some practical considerations which require attention. First 
one has to decide on the set of fl values. Clearly they should be sufficiently 
close together (and the value of rn should be sufficiently large) that 
swapping occurs rather frequently, and fll should be small enough that 
convergence at that fl value is rapid. We have always chosen fl~ = 0  to 
ensure this. It is also necessary to decide for how long to evolve the 
Markov chains between attempted swaps. One can collect information at 
every value of fl at the same time, so that there is very little overhead 
compared with sampling at separate fl values without the swapping. Hence 
the gain in convergence rate is obtained at only marginal cost in computer 
time. In Section 3 we make some further comments concerning our imple- 
mentation of the method and we present numerical results. 

2.2. Umbrella Sampling 

The technique of umbrella sampling was invented by Torrie and 
Valleau ill and has been extensively applied to problems in the theory of 
liquids ~26~ and to spin systems, t27~ The method relies on the identity (2.4) 
and on the observation that this relation is true for any  probability dis- 
tribution {nk}. There is no need for this distribution to be directly related 
to the natura l  probability distribution of the problem. The sampling from 
{7~k} can be carried out using the usual Metropolis criterion with a suitable 
selection of trial moves. The original motivation was to allow efficient 
estimation of free energy differences, but the approach is also a very effec- 
tive way to avoid quasi-ergodic problems. One can choose { ztk}, which we 
call the umbrella distribution, to overlap the Boltzmann distribution(s) at 
the temperature(s), of interest, and to extend to higher temperatures so that 
the mobility of the Markov chain is increased. This allows enormous 
flexibility. 
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However, this flexibility implies that there is no obvious criterion for 
the best choice of the umbrella distribution, t2s) One possibility ~29) is to take 
a weighted linear combination of the usual Boltzmann factors, at a number 
of temperatures, including the range of interest and also higher tem- 
peratures to increase mobility. We write the distribution nk as follows: 

rc k = y" w(flj) e pin'(k) (2.8) 
J 

The problem is to determine appropriate values for the weighting factors 
w(flj). One might choose to make the sampling approximately uniform in 
the temperature variable. 

To satisfy this requirement, we consider the quantity H = Z ~ n k ,  
which may not be unity if the separate rc k are not normalized. We can write 
/7 as 

cn 

/ 7 =  ~ ~k 
k ~ l  

= E E w(flj) e aj''k, 
k j 

= Z w(flj) Z eP'm(k' 
j 

= ~ w(pj) Z,,(pj) (2.9) 
J 

The choice of the weights w(flj) in the above depends on the type of 
simulation that we wish to perform. We want to sample from an umbrella 
which covers a number of distributions at different fl values and, moreover, 
we want to sample equally from each of those distributions. The contribu- 
tion of the j th  distribution to H is w(flj) Z.(flj)/H, and if we set the weights 
such that these are all a constant, then we can expect our algorithm to 
sample equally from these. Hence w(flj)Z,,(flj) must be constant. A con- 
venient choice for the constant is Z.(0), the partition function at infnite 
temperature. With this choice, since the partition function is related to the 
finite-n free energy F.(fl) by the relation Z. ( f l )= exp[nF.(fl)] ,  the weights 
are given by 

w(flj) = e -'(F"(pj) - ~,(o)) (2.10) 

Consequently, to employ this approach we need a reasonable approxima- 
tion to the free energy differences for systems of the required size. 

822/82/I-2-11' 
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3. I M P L E M E N T A T I O N  AND ANALYSIS OF THE METHODS 

To implement any of these Markov chain sampling methods one must 
choose an underlying symmetric Markov chain, i.e., one must decide how 
a trial move is to be chosen. The important technical condition is that this 
underlying Markov chain must be ergodic. In practice this means that 
every state can be reached from every other state in a finite number of 
steps. It is known that Markov chains which use only local moves, and 
which work on walks with a fixed number of steps, are not ergodic, t3~ so 
it is essential to incorporate some nonlocal moves into the algorithm. 

The pivot algorithm ~-'4"-'51 is the most efficient algorithm currently 
known for simulating self-avoiding walks of fixed length. With this algo- 
rithm one effectively independent sample can be produced in a computer 
time of order n (where n is the length of the walk), and this is the best 
possible order of magnitude, since it takes a time of order n merely to write 
down an n-step walk. A vertex of the walk is chosen uniformly and at ran- 
dom, the walk is disconnected into two subwalks at this vertex, one of the 
two subwalks is subjected to a randomly chosen lattice symmetry opera- 
tion, and the two subwalks are reconnected at the chosen vertex. If the 
resulting walk is self-avoiding, the move is accepted, otherwise it is rejected. 
For a detailed description of the algorithm see ref. 31. 

Unfortunately, the efficiency of the algorithm is dramatically affected 
by the introduction of a contact potential which favors compact configura- 
tions of the walk. For example, the probability for a pivot move to be 
accepted for a walk of n = 200 steps, sampled at fl = 0, is approximately 
0.32, whereas for the same walk sampled at the theta point, it is of the 
order of 0.11-0.12. This is because the pivot algorithm often proposes to 
move "large" pieces of the walk and, for more compact walks, these large- 
scale moves are likely to be rejected because of the self-avoidance con- 
straint. In order to increase the probability of a move being accepted in 
these circumstances and to reduce the autocorrelation between samples, 
one needs to introduce other types of moves. 

3.1. Local Moves 

The number of contacts in the walk plays an important role in 
Markov chain sampling for the collapse problem, since this quantity turns 
out to be one of the slowest modes. This mode reflects a local property of 
the walk and it seems reasonable to try to speed up convergence by adding 
to the pivot moves some kind of local  move .  ~31~ 

A local move is one that alters only a few consecutive vertices of the 
self-avoiding walk, leaving the other vertices unchanged. We used three 
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(A) 

I - L  ' I - - I  

(B) (c) 
Fig. 1. Local moves used: (A) One-bead flip, (B) 180 ~ crankshaft, and (C) 90 ~ crankshaft. 

kinds of moves typically known as "one-bead flip, 180 ~ crankshaft, and 90 ~ 
crankshaft" (see Fig. 1 ). 

Although these moves affect only a small piece of the original self- 
avoiding walk, the inclusion of a sufficient number of them can produce a 
reasonable improvement in the autocorrelation time of the slow modes. 
This seems to be because the probability of such moves being accepted is 
of the order of 0.5, independent of the length of the walk and of the value 
of fl, at least when fl is not too large. Moreover, these local changes in con- 
formation can, for compact configurations, be more efficient than pivots in 
changing the numbers of contacts. 

From the point of view of the efficiency of the algorithm, a decision 
must be made about the relative numbers of local and pivot moves. Since 
the pivot moves involve pieces of the walk with size proportional to n (the 
length of the walk), it seems reasonable to combine each of them with a 
number of local moves which is proportional to n. After some initial trials 
we found it convenient to perform n/4 attempted local moves for every 
attempted pivot move. 

In Tables I and II we compare estimates of the integrated autocorrela- 
tion times (given in units of sampling, i.e., per attempted pivot move or per 
attempted pivot +n/4 attempted local moves) of several observables, as a 
function of fl, obtained both from the pivot algorithm and from the 
pivot +local  algorithm with the usual Metropolis sampling scheme. In 
both cases (pivot and pivot +local)  the integrated autocorrelation times 
for all the observables increase as fl approaches the O point, as would be 
expected. ~32~ However, it is clear that the introduction of the local moves 
produces an appreciable reduction in the autocorrelation times of all the 
variables considered. This indicates that the addition of local moves makes 
the pivot algorithm more effective, especially around the transition region. 
From now on, the algorithm which we shall use and refer to will always be 
this combination of pivot and local moves. 
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3.2. Implementation of Multiple Markov Chain Sampling 

The main problem to be addressed in the implementation of the multi- 
ple Markov chain algorithm concerns the determination of the number of 
elementary Markov chains (i.e., the number of fl values) which define the 
composite Markov chain and the way in which these elementary chains 
should be distributed in the range of temperatures which are of interest. To 
be more precise, let ['flmin, flmax] be the interval of inverse temperatures 
over which we are interested in sampling. In addition, suppose that the 
swapping procedure is allowed only between Markov chains that are 
nearest neighbors in ft. If {ill}l=1.,, is the set of fl values in the interval 
[flmin, flmax], the goal is to find a value of m and a set of 6fl(l)=fl/+ J - f l /  
such that there is a reasonable degree of overlap between the distributions 
rrk(fll) and nk(fl/+l)- In our specific case, since we are interested in locating 
the fl value corresponding to the O transition, we need to have good 
sampling in the region close to the O point. Moreover, for the problems 
studied in this paper, it is convenient to consider a fl range which depends 
on the length of the walk being studied, since the width of the heat capacity 
peak decreases as n increases. 

We must also address the question of how frequently swapping should 
be attempted, bearing in mind that our goal is to have a high degree of 
mixing between the chains at the different fl values. 

A partial answer to these questions comes from the observation that the 
scheme we have described has two built-in diagnostics. Suppose we decide 
to attempt only to swap Markov chains at adjacent fl values. If pairs of 
adjacent values are too far apart, very few proposed swaps will be accepted, 
and the realization of the Markov chain will have a low acceptance 
fraction, which will diagnose this problem. The second kind of diagnostic 
involves keeping track of where the swaps take the simulated realizations. 
Imagine that at the beginning of the run we attach a different color to the 
configuration associated with each elementary Markov chain and that the 
color stays with the configuration when it is swapped to a different fl value. 
Ergodicity of the composite Markov chain implies that over a long run 
each color will spend an equal fraction of time at each fl value. The sample 
can be considered well mixed when these fractions are nearly equal and 
when swapping is frequently successful. 

By performing several test runs we found that reasonable results could 
be obtained by attempting a swap every five attempted pivots. The degree 
of uniformity in fl reached with this choice can be seen in Figs. 2 and 3, in 
which we report the relative amounts of time spent by each "color" at each 
fl value for walks of two different lengths. The degree of uniformity is quite 
good for n = 1 0 0  and reasonable for n=600.  The data for n =  100 are 
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Fig. 2. Histogram showing, for a self-avoiding walk of n = 100 steps, the amount of time 
each configuration spent at each different fl value. Different configurations are indicated by 
different symbols. The length of the run considered is 106 attempted pivots and the number 
of fl values involved is 10. 

obtained from a run of  length 106 attempted pivots, while the data  for 
n = 600 come from a run four times longer. Of  course, in order to achieve 
reasonably uniform sampling, the length of  run needed will increase as n 
increases. 

In Tables I and II we report integrated autocorrelat ion times of  dif- 
ferent observables obtained using the multiple Markov  chain algorithm for 
the same values of  n considered previously. For  all the observables, the 
value of  r increases as fl increases up to a value around the critical point. 
For  global observables such as the radius of  gyration, this increase con- 
tinues into the collapsed phase. However, for local observables such as the 
number  of  contacts, r decreases as fl is increased further. We note that 
r ( ( c ) )  is bounded below by a function which is proport ional  to the heat 
capacity 1321 and, since the heat capacity decreases at larger fl, the decrease 
which we observe in r ( ( c ) )  is consistent with this bound. 

It is clear that  swapping leads to a significant decrease in the 
integrated autocorrelat ion times for the larger values of  ft. This in turn 
leads to significantly smaller error bars in the resulting estimates, at very 
little cost in computer  time. 
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Fig. 3. 
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As in Fig. 2, for a self-avoiding walk of n = 600 steps. The length of the run con- 

sidered is 4 x I06 attempted pivots and the number of fl values involved is 12. 

The multiple Markov chain method gives estimates at a discrete set of 
fl values, but these data can be reweighted to obtain estimates at inter- 
mediate values of ft. However, as we shall see in the section which deals 
with the numerical results, the correlation between data sampled at dif- 
ferent values of the temperature must be taken into account in the data 
analysis. 

3.3. Implementation of Umbrella Sampling 

The primary problem with umbrella sampling is the construction of a 
suitable umbrella distribution. Our approach has been to write this dis- 
tribution as a linear combination of Boltzmann distributions, where the 
weights are given by (2.10). To use this method it is essential to have a 
good initial approximation to the free energy of the system of interest. One 
possibility, which has proven useful in various problems in the theory of 
liquids,~26. 29j is a bootstrap method. If we know the free energy for a walk 
of n steps, we can use this as a first approximation to the free energy for 
a walk of n' steps, with n' > n. Then we can use umbrella sampling to form 
a more accurate estimate of the free energy for the walk of n' steps and 
proceed until the range of n values of interest has been investigated. This 
method turned out to be completely inadequate for our problem. For 
instance, we exactly enumerated walks with up to 19 steps and from these 
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Fig. 4. U m b r e l l a  d i s t r ibu t ion  for  a se l f -avoiding wa lk  o f  n = 500 steps. 

data computed the exact values of the free energy for various values of ft. 
We tried using the exact values of the free energy for n = 19 and also 
various extrapolations of these values to approximate the free energies for 
n = 2 5 ,  but with very little success. It seems clear that more accurate 
estimates are needed to form a suitable umbrella distribution. 

The approach which we used to form these preliminary estimates of 
the free energies was as follows. We carried out preliminary runs using the 
multiple Markov chain method to estimate the energy on a discrete set of 
values of fl, fitted these data to a polynomial of  appropriate order in fl, 
and integrated this fitted energy to obtain the (relative) free energy 
F, , ( f l ) -  F,(0). This procedure turned out to be successful over a wide range 
of fl and n values. 

With these estimates of the free energies we can use an umbrella dis- 
tribution constructed as a linear combination of Boltzmann distributions, 
with the weights given by (2.10). The resulting distribution should cover a 
suitable range of fl values and we show the umbrella distribution which we 
obtained for n = 500 in Fig. 4. We found that such umbrella distributions 
gave quite satisfactory sampling over a wide range of fl values, even though 
the distribution is not "flat" over the complete range of interest. 

4. NUMERICAL RESULTS 

In this section we report data on the fl dependence of the heat capacity 
and, in particular, on how the location of the heat capacity peak depends 
on n. We use these results to estimate the location of the O point in the 
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17--* 0o limit. We also estimate the location of the O point using metric 
quantities by the flatness criterion (z~ and this estimate turns out to be 
in very good agreement with the one obtained from the thermal quantities. 
Finally we estimate the value of the exponent v at the O point. 

4.1. Multiple Markov Chains 

Each multiple Markov chain run gives estimates, at a discrete set of 
values of fl, of quantities such as the mean number of contacts ( m )  and 
its variance C =  ( m  2) - ( m )  2, which are equal to the (reduced) energy 
and (reduced) heat capacity of the system. These estimates and their 
associated errors are obtained from averages over each of the elementary 
Markov chains at ill, fl~ ..... tim" In addition, one can obtain estimates at 
intermediate values of fl by reweighting the data obtained from the elemen- 
tary Markov chain at fl,., using (2.5) with ~k=eP''tk)/Z,(fli). Rewriting 
(2.5) as 

( ) ( f l ) -  y~u= ! X(t) (4.1) 
E~=, Y(t) 

we find that the variance of the ratio estimate () is given approxi- 
mately(33. 341 by 

var(()> = (~NN)2 (var(xN> va r (y . )  cov, x . .  yN)~ - -  -t ~ - 2  ( 4 . 2 )  
\ X-N Y-N "YNYN / 

where XN-=Y~=~ X(t) and yN=~,U,=I Y(t). Similarly, the estimates at fl 
obtained from the reweighted data at each fli can be combined by forming 
a linear combination with weights proportional to the inverses of their 
respective variances. In practice, only the data from the two or three fl~ 
values closest to fl contribute significantly and we have followed this route 
in forming our final estimates. 

An alternative way to estimate the variance of a ratio is based on 
considering the time series 

{Z(t)}=IX(t___) Y(t); XN (4.3) 
( XN YN )t= I.N YN 

The variance of Z is precisely the same as the variance of ~ as given in 
(4.2). For most calculations we constructed this time series and computed 
the variance in this way. The autocorrelation time can conveniently be 
computed from this time series (see appendix). 

In Fig. 5 we show the fl dependence of the heat capacity C(fl) for 
n = 200 and for n = 600. Both curves are smooth and show a peak, which 
sharpens as n increases. 
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By r e w e i g h t i n g  the  d a t a  (as  e x p l a i n e d  a b o v e ) ,  it is pos s ib l e  to  o b t a i n  

C(fl) a t  i n t e r m e d i a t e  va lues  o f  fl, a n d  h e n c e  it is pos s ib l e  to  e s t i m a t e  t he  

p o s i t i o n  o f  t he  m a x i m u m  for  e a c h  curve .  T h e  l o c a t i o n  o f  the  m a x i m u m  ( in  

the  l a rge -n  l imi t )  is t he  6) po in t .  I n  T a b l e  I I I  we give o u r  e s t i m a t e s  o f  the  

p e a k  p o s i t i o n s  for  va lues  o f  n b e t w e e n  50 a n d  1600. In  the  nex t  s ec t i on  we 

c o m p a r e  these  r e su l t s  w i t h  t h o s e  o b t a i n e d  b y  u m b r e l l a  s a m p l i n g .  

Table III. Peak Positions of the Heat Capacity Estimated by Multiple Markov 
Chains and by Umbrella Sampling" 

n M MC Umbrella 

50 0.520 + 0.030 0.532 + 0.050 
100 0.470 + 0.020 0.468 ___ 0.040 
200 0.420 + 0.020 0.414 _ 0.020 
300 0.400 _ 0.020 0.397 + 0.010 
400 0.380 + 0.010 0.383 + 0.012 
500 0.370 + 0.010 0.375 _ 0.012 
600 0.360 _ 0.010 0.366 + 0.011 
800 0.370 + 0.015 0.350 _ 0.010 

1200 0.340 +_ 0.010 0.334 + 0.010 
1600 0.329 + 0.010 

The error bars are one standard deviation. 
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4.2. Umbrella Sampling 

Umbrella sampling requires a reweighting of the data from the 
umbrella distribution to the Boltzmann distribution at each fl value of 
interest. This is based on the identity (2.4) and uses the ratio estimate (2.5). 
Since we are using a ratio estimate, the estimates of the statistical uncer- 
tainties can be obtained by block average methods (see appendix) with 
variance given by (4.2). 

The time series (4.3) contains information about the observable of 
interest at a given fixed fl value, and from it it is also possible to estimate 
the autocorrelation times for the observables at that fl value. 35 Such times 
are reported in Tables I and II for the same values of fl and n previously 
considered. For both multiple Markov chains and umbrella sampling, the 
autocorrelation times increase as the transition is approached from small ft. 
This reflects the large fluctuations in the energy around the transition. 32 At 
larger values of fl the behavior is different for different variables. For small 
values of fl the autocorrelation times are similar for multiple Markov 
chains and for umbrella sampling. At larger values of fl the autocorrelation 
times for umbrella sampling are larger. This is because multiple Markov 
chains have large jumps in fl whenever a swap occurs (leading to smaller 
values of r), but umbrella sampling leads to smaller moves, typically, in the 
fl coordinate. Umbrella sampling gives estimates at all values of fl, but this 
gives rise to bigger values of 3. 

We have estimated the energy, heat capacity, and free energy at a 
range of values of fl for values of n from n = 19 to n = 1200. Since we are 
interested in the behavior around the O point, we have constructed 
umbrella distributions which are designed to sample in the range 
0 ~< fl ~< flm,x where we have chosen smaller values of/~max at  larger values 
of n. In Fig. 6 we show the dependence of C(fl)  on fl for n = 200, 600, and 
1200. 

The agreement between the estimates obtained from umbrella sampling 
and from the multiple Markov chain method is usually excellent. In par- 
ticular, the values at f l , , f l ,_ ..... tim, corresponding to the elementary 
Markov chains in the multiple Markov chain approach, agree essentially 
exactly with the values from the umbrella sampling. Between successive 
values there are some minor disagreements resulting from difficulties with 
the reweighting of the multiple Markov chain data. The estimates of the 
locations of the peak maxima are shown in Table III and agree well with 
the estimates from multiple Markov chain sampling. 

In Fig. 7 we show the locations of the peak maxima plotted against 
1/v/-n. We have exactly enumerated walks with n ~< 19 and used the heat 
capacities calculated from these results for these values of n and the values 
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obta ined  from umbrel la  sampl ing for n ranging from 28 to 1200. The value 
cor responding  to n =  1600 has been ob ta ined  from a mult iple  M a r k o v  
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numbers  of  points. For  n = 1200 we combined the estimates from multiple 
Markov  chains and umbrel la  sampling. The fit including the last seven 
points (300~<n ~< 1600) gives fle=0.276+__0.004 and is shown in Fig. 8. 
Considering the addit ional errors due to residual curvature  (estimated by 
including one or two additional points),  we give flo = 0 .276_  0.006 as our  
final estimate. (We note that  the large-n data  are essential in arriving at 
this estimate. For  instance, using the data  only for n = 28, 50, 100, 200, and 
300 gives an estimate of  0.303 + 0.003.) 

To  determine the location of the theta tempera ture  it is also possible 
to use geometric quantities, such as the mean radius of gyrat ion <S,~> or 
the mean end-to-end distance <R~,>. The generalized scaling behavior  for 
these quantities for self-avoiding walks at tricriticality in given by c8"9) 

< 0~,> ,/2 - n , , o f •  (.4.4) 

where q~o is a crossover exponent,  r=IT-OI/O, and <Q~,> can be the 
mean squared radius of  gyrat ion or the mean squared end-to-end distance. 
Let x =n~~ For  small z and large x (corresponding to large n values), 
f• must  have the form 

( l t = / ~  + =(Vsaw-Vo)/q~o for T>O 
f •  t ' l ~ = 0  for T = O  

P-=(Vcomp-Ve)/q~e for T<O 
(4.5) 
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The behavior reported above is expected to be valid in the large-n 
regime, with VSA w = 0.588 ~36J and Vcomp = lid = 1/3. For  smaller values of n, 
at values of  T slightly above O the self-avoiding walk will expand with an 
effective value of  v < VsAw, which is expected to approach VSAW monotoni-  
cally from below as n increases. On  the other hand, for T <  O, the self- 
avoiding walk grows with an effective exponent v > 1/3, which approaches 
the limiting behavior monotonical ly from above. Thus at T =  O the effec- 
tive exponent v is expected to depend only weakly on n, and this gives a 
useful method for locating the O point. A plot of <S'-,>/n against log n 
should show little n dependence for data obtained at the O point. 

This criterion has been successfully used in several previous 
studies.<_,o, 22~ However, it is important  to remember that in d =  3,f_+ is also 
affected by logarithmic corrections proport ional  to I/In n, ~'~ which may 
contribute significantly for small n values. For  this reason we used values 
of n > 200 in applying the flatness criterion. 

As can be seen from Figs. 9 and 10, in which <S~,>/n and <R~,>/n are 
plotted against In n, these ratios are essentially independent of  n for fl = 
0.275 +0.008. In forming this estimate we have relied primarily on the 
radius-of-gyration data, but have included the less accurate end-to-end 
length data in determining the error bar. This estimate is in very good agree- 
ment with the location of  the 6) point obtained using thermal quantities. 
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At this value of fl we estimate v o from both the mean square radius 
of gyration ( S ] )  and the end-to-end distance ( R ] ) ,  from log-log plots, as 
shown in Fig. 11. The estimates have been obtained considering data  from 
runs with n~>100, by fitting l n ( ( S ] ) )  and l n ( ( R ] ) )  as functions of 
x = In n. We have used a function of the form h ( x )  = A + B x  - C / x ,  where 
A and B ( = 2 v )  are the parameters to be determined, and C ~ 0 . 1 0 2  (~~ 
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Fig. 11. Plots ofln((S.2)) and ln((R])) against Inn to obtain 2v e. 
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takes into account the logarithmic corrections showing up at the O point. 
The values obtained are 2Vo[(S~,)]=1.004++_0.006, 2Vo[(R],)]= 

2 0.99 _+0.01. We estimate the amplitude ratio (Rn)/(S;,) at the O point to 
be 6.75 _+ 0.5. 

5. S U M M A R Y  AND DISCUSSION 

We have described two methods for handling quasiergodic problems 
in Markov chain sampling Monte Carlo methods, and have reported our 
experience with these methods for the interacting self-avoiding walk model 
on the simple cubic lattice. We have shown that the performance of the 
pivot algorithm can be improved, when interactions are included in the 
model, by incorporating some local moves which are effective in improving 
the autocorrelation times of the slow modes in the problem. However, local 
moves. (combined with pivots) are not sufficient to give good sampling in 
the region where the interactions are very strong, and we have shown that 
both multiple Markov chain methods and umbrella sampling can lead to 
dramatic improvements in the sampling efficiency. We have been able to 
estimate both thermodynamic and metric quantities for values of n up 
to 1600 for values of fl up to 0.45, which is well inside the collapsed regime. 
For n ~< 400, properties were estimated successfully up to fl = 0.8. 

As a test of these methods, we have estimated the positions of the 
maxima in the heat capacities at different values of n and have extrapolated 
these to form estimates of the (9 point. We have made corresponding 
estimates using metric data and a flatness criterion. Our estimates of the 
location of the O point and of the exponent v(O) are similar to those 
obtained by others 122"271 and agree within the combined error bars. In a 
future publication we shall report results extending to larger values of n 
and fl, and comparing the behavior of walks and polygons. 

The methods described here should be applicable to a wide range of 
problems with strong interactions, where standard Metropolis sampling 
methods fail because of slow convergence of the Markov chain. In addition, 
they can be used to give information not only at the 0 point, but over a 
wide range of values of the interaction parameter. 

APPENDIX. ERROR ESTIMATES AND 
AUTOCORRELATION TIMES 

Effective error estimates are essential in assessing the efficiency of a 
Markov chain Monte Carlo algorithm and in particular the way in which 
it handles quasiergodic problems. A realization of a Markov chain will 
produce a series of random states S( 1 ), S(2) ..... S(N) that are usually highly 
correlated, and this correlation must be taken into account in estimating 
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the variances of estimates obtained by sampling along such realizations. 
These correlations will usually be larger when the Markov chain is less 
mobile, so a good assessment of the errors can give information about the 
efficiency of the Markov chain sampling procedure. 

To be more precise, let the observed states of the Markov chain be 
represented by S(t) and let Q be an arbitrary observable over the set of 
n-step self-avoiding walks. If the distribution of the initial state of the 
Markov chain is the unique limit distribution, then {Q,} -- {Q(S(t))} is a 
stationary stochastic process with average 

( Q , )  = ~ nkQ(k) (A.1) 
k ~ S  

A natural estimator is the sample mean (2.3) and, if the S(t) are inde- 
pendent, the estimate of the corresponding variance is given by the usual 
formula 

1 N--1  

Var(Q) =N(N- 1-----~) ~ (Q'- Q)2 (A.2) 
t = 0  

When the random states S(t) are not independent, Q, given by (2.3), is still 
an unbiased estimate of (Q , ) ,  provided that the initial states of the realiza- 
tion are discarded, to allow the system to relax to the limit distribution. 
However, the variance of this estimate is not given by Eq. (A.2), but is 
typically larger. We considered two different methods for estimating the 
variance of the observable Q. 

A1. Batching or Block Average Method 

The block average method is probably the simplest method of obtaining 
a reliable estimate of the variance of Q. The N sample points ar divided into 
r blocks, each consisting of m = N/r consecutive sample points. Estimates of 
( Q , )  are found using the data in each block, with the estimate from block 
i being 

/m 

Q , = I  Z Q, (A.3) 
m l + ( i - - l ) m  

The estimate of ( Q , )  based on the entire data set [Eq.(2.3)] can be 
expressed as the average of the block estimates: 
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If the block estimates Q,. are indeed independent, then the variance of 
can be estimated as in (A.2): 

1 ~ (Qi- Q)-~ (A.5) 
Vat(Q) = r ( r -  1)i=l 

It is clear that the quality of this estimate depends crucially on the 
choice of the block size m. If m is too small, so that the Qi are significantly 
correlated, then the variance estimate is likely to be too small, leading to 
an underestimate of the errors associated with the estimate of < Q,>. On 
the other hand, if m is too large, the smaller value for r that results leads 
to a larger variance in the estimate of the variance itself. For small r this 
will cause significant doubts concerning whether Q is accurate even if the 
estimated variance from (A.5) is small. 

One way to cope with this problem of choosing an appropriate block 
size is to plot the estimated variance of Q as a function of the block size 
m. If there is were no noise in the variance estimates, these estimates would 
approach the true value in the limit as m increased. From the plot, one 
may be able to pick out an approximation to this limiting value despite the 
noise. 

A2. Autocorrelat ion Function 

Another way to estimate the accurancy of ~9 is to use methods from 
time series analysis. The idea is to introduce an unnormalized autocorrela- 
tion function of the stationary stochastic process {Q,} = {O(S(t))} 

CQQ(S) = < Q,Q,+s> - < Q,>2 (A.6) 

The normalized autocorrelation function is defined by p QQ( t ) = C QQ ( t )/ C QQ( O ). 
Once the Markov chain is in equilibrium, then the integrated autocorrela- 
tion time is given by 

t int(Q) : 1  ~ pQQ(t) (A.7) 

The integrated autocorrelation time controls the statistical error in MC 
estimates of the average < Q> of the observable Q. Indeed, the variance in 
the sample mean Q is given asymptotically by 

var(Q) ~ 1 (2zi.t(Q)) CQQ(O) (A.8) 

822/82/I-2-12 
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In other words, the effective number of independent observations is 
N/(2"t'int). (25) In practice, we calculated the integrated autocorrelation time 
by using a procedure suggested by Madras and Sokal/2s) A "window" 2(t), 
which has 2(t) = 1 if Itl < M  and zero otherwise, is chosen, and Eq. (A.7) 
is approximated by 

1 M [ 1 g - - l d  

" c i n t ( Q ) - - 2 t  Y'~M C~)~(0)  M - - I t l  ~ 
= - -  i = l  

(Qi- ~))(Q/+ i,i- Q)] (A.9) 

where M, the size of the window, is determined by the "automatic window- 
ing algorithm." For details and improvements of this algorithm, see refs. 25 
and 36. 
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